跳到主要內容區塊
:::

期刊論文

Print
    The Osmopressor-Induced Angiopoietin-1 Secretion in Plasma and Subsequent Activation of the Tie-2/Akt/eNOS Signaling Pathway in Red Blood Cell.
    The Osmopressor-Induced Angiopoietin-1 Secretion in Plasma and Subsequent Activation of the Tie-2/Akt/eNOS Signaling Pathway in Red Blood Cell 

    Abstract

    BACKGROUND:

    Water ingestion induces the osmopressor response, which typically presents as increased total peripheral vascular resistance in young healthy subjects. A previous study has suggested that the RBC membrane receptor is involved in osmopressor stress. Recent studies have indicated nitric oxide synthase phosphorylation in RBCs. However, the main process in signaling pathway activation to elicit such a response is unknown. Herein, we hypothesized that hypo-osmotic stress following water ingestion modulates the eNOS/NO pathway, thereby alternating vascular resistance.

    METHODS:

    We included 24 young, healthy subjects. Physiological parameters and blood samples were collected at 5 minutes before and 25 and 50 minutes after 50 ml water, 500 ml water, or 500 ml normal saline ingestion. A human receptor tyrosine kinase (RTK) phosphorylation antibody array was used to simultaneously detect and monitor the biological activation pathways in RBCs.

    RESULTS:

    Of the 71 RTKs assayed during the osmopressor response, several RTKs were significantly upregulated, including Tie-2 and Tie-1. Plasma angiopoietin-1 levels significantly increased at 25 minutes after 500 ml water ingestion compared to those at baseline. Simultaneous phosphorylation of Tie-2, Akt, and eNOS in RBCs occurred. RBCs in vitro were stimulated with angiopoietin-1, Tie-2, or 0.8% saline and showed significant increase in Tie-2, Akt, and eNOS phosphorylation upon angiopoietin-1 treatment and enhanced activation upon cotreatment of angiopoietin-1 and 0.8% saline.

    CONCLUSIONS:

    The hypo-osmotic stimulus of water ingestion increases angiopoietin-1 secretion and subsequently activates the Tie-2/Akt/eNOS signaling pathway in RBCs, thereby revealing a novel biological mechanism simultaneously occurring with the osmopressor response.

    年度:2017
    期刊名稱:AMERICAN JOURNAL OF HYPERTENSION
    卷期頁數:30(3):295-303,2017
    科室 / 作者:病理檢驗部/朱佑祥
    第一作者:朱佑祥
    共通作者群:朱佑祥、呂志成、林作舟、鄒美勇、許育瑞、何善台、童吉士、*曾清俊、*李敏輝、*李恒昇
    通訊作者:李恒昇
    :::